Machine-Learning based model order reduction of a biomechanical model of the human tongue - Archive ouverte HAL Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Machine-Learning based model order reduction of a biomechanical model of the human tongue

Maxime Calka 1, 2 Pascal Perrier 2 Jacques Ohayon 3, 4 Christelle Grivot-Boichon 5 Michel Rochette 5 Yohan Payan 1
1 TIMC-GMCAO - Gestes Medico-chirurgicaux Assistés par Ordinateur
TIMC - Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble - UMR 5525
3 TIMC-DyCTiM - Dynamique Cellulaire et Tissulaire- Interdisciplinarité, Modèles & Microscopies
TIMC - Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble - UMR 5525
Abstract : Background and Objectives: This paper presents the results of a Machine-Learning based Model Order Reduction (MOR) method applied to a complex 3D Finite Element (FE) biomechanical model of the human tongue, in order to create a Digital Twin Model (DTM) that enables real-time simulations. The DTM is designed for future inclusion in a computer assisted protocol for tongue surgery planning. Methods: The proposed method uses an "a posteriori" MOR that allows, from a limited number of simulations with the FE model, to predict in real time mechanical responses of the human tongue to muscle activations. Results: The MOR method is evaluated for simulations associated with separate single tongue muscle activations. It is shown to be able to account with a sub-millimetric spatial accuracy for the non-linear dynamical behavior of the tongue model observed in these simulations. Conclusion: Further evaluations of the MOR method will include tongue movements induced by multiple muscle activations. At this stage our MOR method offers promising perspectives for the use of the tongue model in a clinical context to predict the impact of tongue surgery on tongue mobility. As a long term application, this DTM of the tongue could be used to predict the functional consequences of the surgery in terms of speech production and swallowing.
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-02966539
Contributeur : Yohan Payan <>
Soumis le : mercredi 14 octobre 2020 - 09:51:42
Dernière modification le : mardi 24 novembre 2020 - 16:00:15

Fichier

Calka 2020 Computer Methods an...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Maxime Calka, Pascal Perrier, Jacques Ohayon, Christelle Grivot-Boichon, Michel Rochette, et al.. Machine-Learning based model order reduction of a biomechanical model of the human tongue. Computer Methods and Programs in Biomedicine, Elsevier, 2021, 198, pp.105786. ⟨10.1016/j.cmpb.2020.105786⟩. ⟨hal-02966539⟩

Partager

Métriques

Consultations de la notice

47

Téléchargements de fichiers

64