Archive ouverte HAL - Quasi-Periodic Non-negative Matrix Factorization for Phonocardiographic signals denoising

Quasi-Periodic Non-negative Matrix Factorization for Phonocardiographic signals denoising

Abstract : Mechanical cardiac activity may be monitored with phonocardiographic (PCG) signals giving access to cardiac sounds. However, many noises interfere with cardiac information in raw signals and denoising such signals is necessary before interpretation. Non-negative Matrix Factorization (NMF) is of interest for time-frequency representations to separate noise and signal components. In this paper, to exploit the quasi-periodicity of the PCG, a quasi-periodic NMF (QP-NMF), based on multiplicative updates derived from a Majoration-Minimization algorithm, is proposed to decompose the PCG spectrograms. Numerical simulations show the good behavior of the proposed method to separate quasi-periodic components from the others. Finally, applied on real noisy PCG signals, QP-NMF shows its interest compared to an unsupervised NMF to denoise PCG signals.
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01847123
Contributeur : Bertrand Rivet <>
Soumis le : lundi 23 juillet 2018 - 11:36:48
Dernière modification le : jeudi 21 mars 2019 - 14:56:10
Document(s) archivé(s) le : mercredi 24 octobre 2018 - 14:20:45

Fichier

article_sam.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01847123, version 1

Citation

Nafissa Dia, Julie Fontecave-Jallon, Pierre-Yves Guméry, Bertrand Rivet. Quasi-Periodic Non-negative Matrix Factorization for Phonocardiographic signals denoising. 10th IEEE Workshop on Sensor Array and Multichannel Signal Processing (SAM 2018), Jul 2018, Sheffield, United Kingdom. pp.390-394. ⟨hal-01847123⟩

Partager

Métriques

Consultations de la notice

86

Téléchargements de fichiers

101