Soutenance de thèse de J. CONSUEGRA BONILLA le 13/12/2016

Jessika CONSUEGRA BONILLA, équipe GEM, soutiendra sa thèse le mardi 13 décembre 2016 à 14h00.

"Bases écologiques et moléculaires de la diversification adaptative chez escherichia coli"

Lieu : Amphithéâtre INF Nord - Bâtiment Jean Roget, Faculté de Médecine, 38706 La Tronche.

Sous la direction de :

  • Joël Gaffe, directeur de thèse
  • Dominique Schneider, co-directeur de thèse

Jury :

  • Ivan MATIC – Rapporteur
  • François LEULIER – Rapporteur
  • Daniel ROZEN - Examinateur
  • Laurence DESPRÉS - Examinateur


Résumé :
Les événements de diversification adaptative sont des éléments primordiaux de l’évolution. En effet, ils engendrent des innovations phénotypiques telles que la colonisation de nouvelles niches écologiques et au final, la spéciation. Afin d’étudier les ressorts écologiques et moléculaires de la diversification adaptative, nous utilisons la plus longue des expériences d’évolution en cours. Depuis 1988, soit plus de 60 000 générations, douze populations indépendantes issues d’un ancêtre commun d’Escherichia coli sont propagées quotidiennement dans un milieu minimum comportant une faible quantité de glucose. Un événement unique de diversification s’est produit dans une des 12 populations (Ara–2). Deux lignées de phénotypes différents sont apparues après environ 6500 générations, les S pour « Small » et les L pour « Large », chacune présentant des tailles cellulaires différentes. Les deux lignées coexistent grâce à une sélection négative dépendant de la fréquence qui favorise la lignée la plus rare et permet de supplanter sa concurrente ; ainsi, aucune des deux lignées ne s’éteint. Avant l’événement de diversification, la population Ara–2 a développé un phénotype hypermutateur suite à la mutation d’un gène de réparation de l’ADN. L’objectif de cette thèse est de caractériser les mécanismes écologiques, physiologiques et moléculaires sous-tendant l’émergence et la coexistence des lignées S et L. En premier lieu, nous avons utilisé un ensemble d’expériences d’évolution in vivo et in silico afin de déterminer les moteurs écologiques et physiologiques de l’émergence de ce polymorphisme. Plusieurs mécanismes écologiques, incluant les compromis (trade-off évolutifs), la saisonnabilité et les déplacements de caractères interviennent dans l’émergence et la persistance de la diversité au long terme. Nous avons montré que la lignée L, en produisant de l’acétate, créait une nouvelle opportunité écologique exploitée par les S. De plus, au cours du temps, les S et les L s’adaptent à leur niche écologique, respectivement l’acétate et le glucose. En second lieu, nous avons cultivé les S et les L séparément pour éliminer la compétition entre les deux lignées. Dans ces conditions, il y a perte des interactions dépendantes de la fréquence entre les S et les L. Ceci démontre l’importance de la compétition dans le maintien du polymorphisme. En troisième lieu, nous avons combiné des approches génétiques, physiologiques et biochimiques pour déterminer le rôle, dans l’émergence du polymorphisme, d’une mutation spécifique aux S survenant dans le gène arcA, codant un régulateur global. Nous avons montré que l’allèle évolué de arcA augmentait la transcription de gènes du métabolisme de l’acétate dans la lignée S. Au cours de cette étude, nous avons identifié une mutation supplémentaire dans le gène acs, impliqué dans le métabolisme de l’acétate, intervenant dans l’émergence de la lignée S. Nous avons aussi démontré que ces deux mutations étaient favorables à la lignée S au début de son émergence, puis que des mutations plus tardives agissaient de façon épistatiques avec les allèles évolués de acs et de arcA. Ainsi, ces résultats démontrent que l’établissement et le maintien du polymorphisme des S et des L est un processus en plusieurs étapes nécessitant des interactions épistatiques entre plusieurs mutations. En quatrième lieu, nous avons identifié la dynamique au long terme des taux de mutations dans cette population. L’apparition et l’invasion rapide du phénotype hypermutateur est suivie d’une réversion complète mais indépendante dans chacune des lignées S et L. L’émergence d’un polymorphisme bactérien durable reflète une restructuration complexe des réseaux métaboliques et de régulation dans ces lignées qui co-existent, ce qui aboutit à l’apparition et à l’exploitation de nouvelles opportunités écologiques. La compétition et l’évolution de l’utilisation de ressources différentes sont des forces sélectives permettant le maintien du polymorphisme.


Laboratoire TIMC-IMAG, Domaine de la Merci, 38706 La Tronche Cedex

CNRS
UGA
ENVL
Grenoble INP
Mentions Légales