Soutenance de thèse de G. PENVEN le 11/07/2016

Géraldine PENVEN, équipe SyNaBi, soutient sa thèse le lundi 11 juillet 2016 à 13h30.


Titre :
« Encapsulation de dispositifs symbiotiques implantables : Evaluation de la biocompatibilité et desperformances »

Lieu : Salle des Thèses (109) Bâtiment Boucherle Faculté de Médecine 38706 La

Membres du jury :

· Donald MARTIN, directeur de thèse, UGA

· Philippe CINQUIN, co-directeur de thèse, UGA

· Loïc BLUM, rapporteur, INSA Lyon

· Laurence BORDENAVE, rapporteur, CHU Bordeaux

· Sophie TINGRY, examinateur, Université de Montpellier

· François BOUCHER, examinateur, UGA

Résumé :

Afin de répondre à une demande de soins et traitements toujours mieux adaptés et plus performants, des dispositifs médicaux implantables (DMI) ont vu le jour. Il s’agit actuellement de dispositifs isolés et autonomes à l’intérieur de l’organisme hôte, dont la fonction ne nécessite pas d’interaction avec celui-ci, ou uniquement dans un sens (par la libération de molécules par exemple). Une nouvelle génération de DMI dont le fonctionnement s’appuie sur des échanges continus avec l’organisme vivant est toutefois en cours de développement, et un des points clefs de leur élaboration est l’enrobage. En effet, l’interface entre le DMI et le corps joue un rôle primordial puisqu’elle doit assurer une symbiose parfaite entre ces derniers. Les mécanismes inflammatoires et immunitaires étant si complexes et puissants, il est nécessaire de protéger ces dispositifs tout en leur permettant de communiquer avec l’organisme hôte. En outre, cette barrière protège aussi le corps d’éventuels éléments agressifs libérés par l’implant. Ainsi, le travail de recherche décrit dans ce manuscrit concerne la fabrication et la caractérisation d’un matériau qui peut être utilisé pour enrober des dispositifs symbiotiques implantables.

Dans ce contexte, les hydrogels d’alcool polyvinylique (Poly(vinyl alcohol) : PVA) polymérisés physiquement par un procédé de congélation/décongélation se sont révélés particulièrement intéressants. En effet, leur structure semi-cristalline permet de modifier leur porosité et leurs propriétés mécaniques en faisant varier les paramètres de fabrication. Nous avons donc caractérisé physico-chimiquement les hydrogels de PVA (propriétés mécaniques, porosité, diffusivité), avant d’étudier leur biocompatibilité in vitro et in vivo. Pour finir, nous nous sommes concentrés sur un DMI particulier qu’est la biopile à glucose implantable, en analysant les performances du PVA en tant qu’enrobage d’électrodes.

Ainsi, nous avons déterminé un procédé de fabrication permettant d’obtenir une membrane enrobante solide et facile à manipuler, poreuse afin de laisser diffuser le glucose et l’oxygène de manière optimale jusqu’à l’électrode, et protectrice vis-à-vis des protéines de l’organisme de plus grandes tailles.


Summary :

The development of implantable medical devices (IMD) provides for more efficient treatment in specific healthcare applications. Such devices are isolated and autonomous within the host organism. Their function does not usually require any input from the host, with the main function of the IMD being typically to stimulate tissues (e.g. muscles, nerves) or to release molecules (e.g. osmotic pump). New generations of IMD that rely on the on continuous duplex interactions with the living organism are being developed. The key aspect of such IMD is the interface with the internal environment of the body. This interface plays a crucial role because it must ensure a perfect symbiosis between the IMD and the host. For example, the interface must both protect the IMD from the complex and powerful inflammatory and immune mechanisms in addition to providing an efficient communication pathway with the host organism. Furthermore, this interface also protects the body from the potentially aggressive elements that can be released by the IMD. The research described in this manuscript is focused to the manufacture and characterisation of a material that can be used to coat IMD so as to optimise both the biocompatibility and efficient functions of the IMD.

In this context, the research described here has focused on hydrogels of polyvinyl alcohol (PVA) physically polymerized by a freeze/thaw method. Indeed, the semi-crystalline structure of PVA allows modification of the porosity and mechanical properties by varying the parameters of the production process. We therefore performed physico-chemical characterisations of PVA hydrogels (mechanical properties, porosity and diffusivity) before studying in vitro cytotoxicity and in vivo biocompatibility. We tuned the PVA membranes to a specific IMD that relied upon duplex communication for its function (i.e. the implantable glucose biofuel cell) and analyzed the performance of PVA to provide an optimised coating. The results report an optimised manufacturing process for PVA that provides for the IMD (i) a solid and easily handled membrane, (ii) a porous membrane optimised for the diffusion of glucose and oxygen to the IMD bioelectrodes, and (iii) a protective membrane against proteins of larger dimension.


Laboratoire TIMC-IMAG, Domaine de la Merci, 38706 La Tronche Cedex

CNRS
UGA
ENVL
Grenoble INP
Mentions Légales